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summary 

This paper presents general equations for treating sensitized reactions 
when two different excited states of the sensitizer both contribute to 
sensitization. Specific equations are presented for common limiting condi- 
tions, including cases where the two excited states are and are not inter- 
convertible. 

1. Introduction 

Electronic energy transfer can be exploited in several ways to obtain 
mechanistic information about photoreactions [l, 21. Stem-Volmer 
quenching studies have been widely used to estimate excited state lifetimes. 
Sensitization studies allow measurements of intersystem crossing yields. A 
combination of selective quenching and sensitization experiments can often 
identify the multiplicity of the excited state responsible for a given photo- 
reaction. Quantitative sensitization studies [ 21 can also disclose excited state 
lifetimes, although they have not been used very often for this purpose. 
There are some situations where only sensitization experiments can provide 
the necessary information. 

(1) Only a comparison of ktr values derived from sensitization studies 
with kqr values derived from quenching studies can tell whether the same 
excited states are involved [ 3,4] and whether quenching is wholly due to 
energy transfer [ 41. 

(2) Only sensitization studies can disclose excited state lifetimes of 
sensitizers which undergo no detectable emission or reaction [ 6,6 ] . 

(3) Sensitization studies can detect excited states with lifetimes in the 
1 ns > 7 > 10 ps range, i.e. too short for conventional flash spectroscopic 
identification and even, at the shorter end, too short for significant quench- 
ing [3,7]. 

(4) Sensitization studies can expose the presence of two independent 
excited states when either or both are subject to constraints (2) or (3) [ 7, 81. 
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This paper is devoted to situation (4). Interest in bichromophoric com- 
pounds has mushroomed recently. It is obvious that in such compounds 
excitation may be spread over both chromophores. At the same time, 
recognition has grown that single compounds may exist in different 
conformations which upon excitation become kinetically distinct excited 
states [7 - 91 . 

2. Basic equations 

The following equation describes the well-known linear double 
reciprocal relation between sensitized quantum yields and acceptor concen- 
tration [A ] when only one excited state of the sensitizer D is involved: 

(1) 

where $(n+) is the probability that light absorption yields the requisite 
donor excited state (#isc in triplet-sensitized reactions), cy is the efficiency 
with which the acceptor excited state undergoes the sensitized reaction being 
monitored, k, is the bimolecular rate constant for energy transfer from D* 
to the ground state of A and 7n * is the kinetic lifetime of the donor excited 
state [2] . It must be remembered that if the sensitized reaction is reversible, 
or if the product is also a quencher, eqn. (1) must be corrected for conver- 
sion as described in ref. 2. The intercept of a plot of @s&1- us. [Al-l is 
6; a-l; if either is known, the other is thereby measured [ 10 ] . The ratio of 
intercept to slope equals ktTDt; as usual, if k, is known or diffusion 
controlled, Tn+ is thereby measured. 

Let us now consider a compound (or mixture of two compounds) that 
absorbs light to yield two distinct but interconverting excited states L’ and 
S’ (the L and S arbitrarily but conveniently distinguish the longer and 
shorter lived excited states, as determined by the values of kdtLj and &(a,, 
the pseudo first order rate constants for irreversible decay of each state by 
all chemical and physical processes available to it). Scheme 1 indicates all the 
relevant processes, rate constants and probabilities. 

Steady state analysis of [A*] , [L‘] and IS*] produces 

aa,l= 
(~+KsA)(~+KLA)--sL~Ls 

&A@',(1 +KLA)+FL~Ls)+KLACFL(~ +&~)+J%hI 

where 

@LS = kLs(kLs +kmF1 = kLs7L 

+SL = ks,(ksL + k,cs,)-1 = ksLTs 

KS =ktcs KL =k tLrL 

(2) 

@a) 
(3b) 

(3c) 
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ground 
states 

Scheme 1. 

kd(L, f kd(S, ground 
State3 

araG 

(1 + & + K&4)(1 + tits + KLA) - &~@;rs 
= K~A{F~(~+~;~~+K~A)+F,~~,)+K~A{~,(~+~~L +GA)+~&L~ (2’) 

where 

& = hs/ka(L) = km6 W) 
&I, = ksL/h(sj = kL& W’) 
Kk = ktsikaw K;, = ktL/kw (3c’) 

In these equations CI has the same meaning as in eqn. (1) and A stands for the 
concentration of acceptor. The meanings of FL and F, vary as indicated in 
Table 1. The differences between eqns. (2) and (2’) involve the definitions of 
rs and rL, as indicated in eqns. (3) and (3’); one or the other form is more 
easily manipulated under different boundary conditions. Unless specifically 
indicated, 7 values will be defined as in eqns. (3). 

The numerators and denominators of eqns. (2) and (2’) can both be 
divided by A” [ 111 since [A] is never zero in a sensitization experiment. 
After regrouping, eqns. (2) and (2’) reduce to 

d?,Bl = 
KsKL +(Ks + KL)X +(I -~Ls~sL~+ 

fKsK~ +C(Fs + FL@LsUG~ +FL + %~L)KL~ 
(4) 

c&;l = 
K;K;, + {K;(l+&) +K&(l +&)]x + (1 +&.,s +&)x2 

fKSK~ + I(& + f&,s)Kk + FL + ~GLVGJIX 
(4’) 

where x = [A] ml and f = FL + Fs . Both equations are of the basic form 
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TABLE 1 

FL and F, in different situations of L and Sa 

Multiplicity Different compounds Bichromophoric Different conformationsb 

Singlet, FL 

Singlet, F, 

Triplet, FL 

TripIet, Fs 

EL[Ll 

ELCLI + es[Sl 

MS1 

ELKI + eslS1 

cslS1 4&c 

ELCLI + +3[Sl 

ELXL 
= XL 

ELXL + esxs 

%XS 
= xs 

ELXL + %Xs 

ELXL &3c 
4: XL&SC 

ELXL + Qss 

wwP&c 
- X&SC 

ELXL + %Xs 

aThe ES are ground state extinction coefficients; the xs are ground state equilibrium frac- 
tions: XL + xs = 1. 

bThe approximate values are exact when EL = es. 

exemplified by 

crag = a + bx + cx2 
fa + dx 

where the values of a, b, c and d are obvious from eqns. (4) and (4’). Equa- 
tion (5) indicates a hyperbolic dependence of @i1 on [A]-‘, so that the 
usual doubIe-reciprocal plot curves but attains an asymptotic linearity at low 
acceptor concentrations (high values of x). In this respect the sensitization 
equations resemble those for quenching when two excited states are involved 
[ 12 - 141. As with curved quenching plots [ 151, it is best to analyze data by 
computer fit. Good precision requires far more data than for a linear plot, 
especially in the region of maximum curvature and at low enough [A] values 
to establish the oblique asymptote. 

The first derivative of eqn. (5) evaluated at x = 0 establishes values for 
the intercept and the initial slope: 

1 
intercept, = - 

f 

intercept* 
=fa 

slope0 fb -d 
(7) 

Solving for the oblique asymptote yields the following equations for 
the final slope and -the intercept of the asymptote extrapolated to x = 0: 

intercept, = 
bd - fat 

d2 
(8) 
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intercepti bd - fat = 
slopei cd 

(9) 

Equations (4) and (4’) contain seven independent parameters of mech- 
anistic interest: a, FL, Fz, ktSTs, ktLTL, kmrt and kSLrs. The factor (Y relates 
only to the behavior of the excited acceptor and therefore appears on the left- 
hand side of the equations. It would be silly to do studies with two sensitizer 
excited states unless the value of LI! were already known. 

The other six parameters all relate to the sensitizer. The actual intercept 
at x = 0 alzuuys equals (FL + F&l no matter what boundary conditions 
simplify a, b, c and d. The F values are composed of two ground state para- 
meters (extinction coefficients and concentrations) which usually can be 
measured independently and, for triplet sensitization, intersystem crossing 
yields. The kt7 terms are what usually emerge from intercept/slope ratios. 

The #Ls and $sL terms indicate how efficiently interconversion of the 
two excited states competes with irreversible decay; their values can vary 
from 0 to 1 (in eqn. (4)) or from 0 to 00 (in eqn. (4’)). Each extreme defines 
a boundary condition which represents a common mechanism. In general, 
only four independent parameters can be evaluated from plots which follow 
eqn. (5). Therefore, some of the six independent parameters on the right- 
hand side of eqns. (4) and (4’) must be evaluated by experiments other than 
sensitization. 

If often happens that k,, = kt~, i.e. when both energy transfer processes 
are diffusion controlled. Replacement of ka and ktL with a single k, value 
does not simplify eqns. (4) and (4’) significantly but does simplify some 
equations coming later. 

3. General case 

The most complicated scheme assumes that all interconversions and 
decay processes are competitive. The parameters in eqns. (4) and (4’) are 
then fitted to eqns. (7) - (9) as follows: 

in tercepte = f&G, 
slope0 &K,(l--#SL) +FLK& -has) 

(10) 

intercept, = 
slope0 

interceptf = 

fK;Kt 
F,K;, + FLK$ W’) 

(FL +FSeSL)K: f(F, +FL@LsW$ +VL#LS +fhshrAK& 

((FL + &&L)KL + V's +FL~Ls)KsI~ 

(11) 
interceptl = 
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intercept+ = (FL + ~s~,IMZ + (& + FL#Ls)&2 + VL@LS + f@LS~SL)KLKS 

slopet (I- CpSL~LdWL +Qkd&4 + (Fs f~L@Ld&I 

intercep& 
(12) 

= 
slopet 

(FL +f&(l +&VG2 +(Fs +f&)(l +9ts)G2 +W% +~&IM$L +(Fs +fG&;lsUWG 

(1 + Gs + GJWS + f&s)G + (FL + f&LEJ 
WI 

These equations are not as complicated as they appear. For example, 
the coefficient of XE in the numerators of eqns. (11) and (12) is simply the 
total probability of forming L* -- both from ground state L and from S’, 
Depending on the F values and the extent of excited state interconversion, 
the initial and final slopes can be determined primarily by KS and KL 
respectively or by mixtures of the two. 

Although the 1 - esLeLs term in the denominator of eqn. (12) 
approaches zero as the extent of interconversion increases, the KL and & 
terms also decrease so that the slope does not approach infinity. In fact, as 
the equivalent eqn. (12’) shows, with the KS independent of the 9s the slope 
decreases as the extent of interconversion increases. This fact will be made 
more obvious by the examples given later. 

As has been pointed out previously, plots according to any equation 
like eqn. (5) can curve up or down or be linear [ 12 - 141. The second 
derivative of eqn. (5) yields the following expression for the curvature: 

curvature = 2W2 + f2cc -fW 
(fu + dx)3 

(13) 

A linear plot results whenever d2 + f2ac = fbd, as we11 as in the trivial 
case when there is no energy transfer from one or the other excited state 
(a = 0). Incorporation of the coefficients in eqn. (4) results in 

(& -nhr: + (FL -ME + (2WG -9% --fJWL& + 

F;, G F;F; 

+ 
f2U -4LSGSL)KLKS 1 

F;F; <O 
(14) 

Fh =J's+J'L#Ls (154 

%=FL +FS#SL (15b) 

The first three terms in expression (14) must be negative (or zero) since 
FL d f 2 Pi; the fourth term is positive (or zero), since $Ls Q 1 > 4sr,. 
Therefore the following expression describes the conditions for curvature: 

I 

Vi - f W; + (FL - fF% + (=Wi, - fG, - fJWG,G 

F;. FL F;F;: I 

> f2U -@LsdJsL)KL& 
= 
< F;Fb 

(16) 



A linear plot results if the two sides of expression (16) are equal. The plot is 
concave downward if the left-hand side is larger than the righthand side; the 
plot is concave upward if the opposite inequality obtains. 

4. Special cases 

4.1_ Case 1: no interconversion of states (ksL rs = kLsrL = 0) 
Under these conditions 11~ = kd and eqn. (2) collapses to 

c&B-f = (1 + ktsrsA)(l + ktL7LA) 

F&7&(1 + ktr_+TLA) + &,ktL~LA(f + k,srsA) 

Equations (4) and (4’) collapse to 

a@_l _ K&L + (KS + KLP +x2 
fK&, +Ws& +FLKL)~ 

where 

intercept, = 
slope, 

interceptt = 

f-&KL fktsQ 

%Ks + F&L =Fs +FLK 

FsKg + FLK: F<'(l + K 2Fs) 

(F,K, + FLKL)2 = 1+ ~K&/F~ + K~F;/F: 

interceptt F,K: + FLK; 

slope, = F& +FJiL = 
k 

tL7L 

(17) 

(13) 

(19) 

(20) 

K = ktsTs/ktLTL (22) 

This set of boundary conditions has already been reported twice in the 
literature, for benzoylcyclohexanes [ 91 and benzoylpiperidines [ 81, although 
a curved sensitization plot was reported for the latter only. 

Equations (19) - (21) are factored to emphasize what happens when 
&T~ Q ktLrL (i.e. K = 0) and Fs - FL: 

’ intercepQ,/slope,, = ktSrS( 1 + FL/F,) 

intercepti = FL1 

intercept,/slope, = tz,L~L 
i. 

(23) 

(24) 

(25) 

Although the final intercept and slope approach is determined only by 
FL and ktLTL, the initial slope is not determined simply by ktsrs and Fs but 
is affected by the value of FL. 

If it is known from independent experiments that I,” and S* do not or 
cannot interconvert, analysis of data plotted according to eqn. {18) affords 
all the parameters of mechanistic interest. 
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4.2. &se 2: complete equilibration of states 
Equation (4) collapses to l/f when kLSrL and ksLrs are set exactly 

equal to unity, so eqn. (4’) must be used. However, inspection of eqn. (4) 
shows that the x2 term disappears as equilibrium is approached, reflecting 
the linear plot actually obtained. The new boundary conditions are 
kLS7~kSLr~ $= 1; there is only one actual lifetime 7,. 

Under these conditions, eqn. (4’) simplifies to 

(26) 

Because of the boundary conditions chosen d = fb, so that 

CC&I = 
a + bx + cx2 

fa + fbx 
=+ 1+c1c2 

( a f bx 1 (27) 

The intercept remains l/f but the initial slope is zero! This anomaly arises 
because the boundary condition implies kd = 0 for both states. The actual 
plot is described by 

intercept = A- 1 - 
1 

Y2 

t 

1 
e-- 

f ktsktL(ksL + k~sh f 
(28) 

Y = x&s + x&tL (29) 

xs f XL = 1= 
krs ksL 

ksL + hs + ksL + hi 
(30) 

l/7= = xsktcs) + X&d(L) 

intercept+ kts ktL 

slope, 
= -y7e - 

(ksL + %& 

(31) 

* Y7e (32) 

The plot deviates only slightly from being linear throughout since the second 
term in eqn. (28) is extremely small. 

Note that when k,s = ktL = kt , r = kt. Equations (28) and (32) indicate 
curvature in the plot when kt > (ksL + k~s). This corresponds to interference 
by acceptor in the equilibrium, a phenomenon which has already been shown 
to cause curvature in Stern-Volmer quenching plots [ 161. However, because 
of the boundary conditions chosen, a sensitization plot has already reached 
within experimental error of aB = fcr by th e t ime enough acceptor is present 
to upset equilibration. 

It is important to note that a linear sensitization plot is no more indic- 
ative of a single excited state donor than is a linear quenching plot [12 - 141. 
With luck, a combination of quenching and sensitization studies can distin- 
guish three situations: one donor, two equilibrated donors and two partially 
equilibrated donors in which the curvature coincidentahy equals zero. This 
differentiation is possible only if the two donor states undergo different 
quenchable reactions. 
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4.3. Case 3: interconversion of states is irreversible in one direction 

l/rs = kd(s) I/~L = kd(L) +ks ksL=O 

One clear-cut example has appeared involving rotation of an unreactive 
excited conformation into one which reacts far faster than it can rotate back 
to an unreactive form [ 71 : 

a0,l= 
KSKL + (K, + KL)X + x2 
fKsKL+vw,+~L~L)x 

(33) 

~t=ePto _ fKSKL fKs 

slope, F$KL + FLFs(l - @LS) = Fs + FLK(~ -- '@LS) (34) 

FLflL +F$K; +FLeLsKsKL 

interceptf = F,KE + Fk2K; + 2FLF$KsKL 
= F;l 

1 + FLK”/FL + @-K 

1 +(F$K)'/F~+ ~F~K/FL 

(35) 
intercept* 

= 
F,K; + F$K; + FL$LsKsKL KL +&HLs+ F~W'L) = 

slopet FLKL f F&KS 1 + F$K/F~ 

(361 

intercept f 

slope, 
* ktr,TL + @U&Q (37) 

Again, the equations are factored to show that eqns. (34) and (35) 
approach eqns. (23) and (24) respectively as K approaches zero, while eqn. 
(36) approaches eqn. (37). 

It is equally possible to derive analogous equations for the case where 
kLS = 0. Since the two states have been defined arbitrarily, this exe&se is un- 
necessary. 

4.4. Case 4: one state only converts into the other, which only decays 

1bs = kd(s> WL = kLs ksL = 0 

Thiscase is aspecialexample ofcase 3,so eqns.(34)-(36)collapseto 

intercept, _ fkt5Ts 
slope, FS 

(36) 

interceptt 

F,K; + FLK~Ks + fK: -_ Fcl 1 + K + fK2/FL 

= P,KE + 2fF,KLK, + f2Kg 1 + 2fx/FL + f2KZ/pL 
I (39) 

intercepti = F,K; + fK; + FLKLKs ktLTL + k,rs(l + F/FL) = 
slopet FLKL + fKs 1 + fWL 

(40) 



5. Examples 

Figure 1 displays four examples of case 1 (no interconversion of states) 
with Fs = FL = 0.5 (f= 1). 

Fig. 1. Representative sensitization plots for two non-interconverting excited states with 
F, = FL = 0.5. The numbers on each curve indicate the values of KS and KL respectively. 

It is noteworthy that, of the examples shown, that with the biggest 
spread of K values (K, = 1 M-l, KL = 1000 M-l) is the farthest from having 
reached its oblique asymptote. The x = 50 and x = 100 points determine a 
line with intercept 1.94 and intercept/slope ratio of only 822 M-l, whereas 
the true asymptote intercepts at 2.0 and has an intercept/slope value of 999. 
In the (1,100) case, the same two concentration points determine a line with 
intercept 1.90 and intercept/slope ratio of 94 M-l, in comparison with the 
asymptotic values of 1.96 and 99 M-l; in the (1,lO) case, the same two 
points (not shown in the Fig. 1) yield apparent values of 1.64 and 9.0 M-l 
compared with the true values of 1.67 and 9.2 M- ’ _ The (10,100) plot has 
the same shape as the (1, 10) plot except for a ten-fold stretching of the 
ordinate; its true asymptote has intercept 1.67 and intercept/slope ratio 91.8 
M-l; thex = 50 and x = 100 points lie on a line with intercept 1.42 and inter- 
cept/slope ratio 72. The higher the K value, the lower are the values of [A] 
required to determine the final slope accurately. 

Figures 2 and 3 illustrate how varying amounts of state interconversion 
alter the plots. In both cases, Fs = 5, FL = f, KL = 1 M-’ and KL = 300 M-l. 
In Fig, 2 either C# Ls or #I& is zero. The middle curve exemplifies both 4Ls 
and $& being zero; its asymptotic intercept and intercept/slope ratio are 2.96 
and 2.98 M-l respectively, and its initial intercept/slope ratio is 1.5 M-l. 
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, , 
50 100 

A-' 

I L 

50 100 
A-’ 

Fig. 2. Representative sensitization plots when interconversion between two excited states 
is one way with Fs = 2/3, FL = l/3, Ki = 1 and Ki = 300. The numbers on each curve 
indicate the values of $‘SL and @is respectively. 

Fig. 3. Representative sensitization plots for two interconverting excited states as the 
extent of interconversion varies: FS = 2/3, FL - l/3, K$ = 1 and Kh = 300. The numbers 
on each curve indicate the values of $$L and #;, respectively. The curve marked “eq” 
represents equilibrium (#go = 4~s = 100). 

Increasing &s increases the final slope and decreases the asymptotic inter- 
cept. The latter effect is gradual, the value still being 2.78 when &a = 4 but 
only 1.25 when $ b = 100. The increase in the slope is closely but not exact- 
ly proportional to the decreasing rL (= 72 = kd + kLS); the value of the inter- 
cept/slope ratio decreases from 298 to 148 to 58 to 2.5 M-l as GLs rises from 
0 to 100. 

As $& rises, find slopes and intercepts both decrease gradually so that 
the value of the intercept/slope ratio remains constant at 300 M-l. Rather 
remarkably, the initial intercept/slope ratio remains invariant at 2.5 M-* as 
both & and #J& increase. Of course, if the main fate of S’ or L’ is irrevers- 
ible conversion to the other, as in the two extreme curves, one observes a plot 
that does not deviate experimentally from linearity. 

Figure 3 has the same F and K values as Fig. 2. The situation where & 
and $h are both unity results in a curve with find intercept 1.49, intercept,,/ 
slope,, ratio 1.5 M-l and interceptf/slopet ratio 200 M-l. Further increasing 
both #, and @k lowers the intercept until the linear equilibrium plot results. 
Note.that its slope is about double that of the (#& = 0, #&, = 100) situation 

in Fig. 2. 
Lowering &s changes the plot only slightly; the (1,l) case in Fig. 3 lies 

only slightly above the (I, 0) curve in Fig. 2. 
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Increasing $ts ag ain raises the final slope substantially but not as dras- 
tically as when #& = 0. Thus, at ($& = 1, #k = loo), intercepti is 1.28 and 
intercept+ /slopef is 6.3 M-l. 

Figures 4 and 5 demonstrate how variations in Fs and Fr, change sensi- 
tization plots. In both cases, KI, = 1 M-l and Ki = 300 M-l; in Fig. 4, @&, = 
&s = 0; in Fig. 5, I$& = &s = 1. When Fs = FL = 0.50, the intercepto/slope, 
ratio is 2.0 M-l, the intercepti is 1.99 and the interceptf/slopet ratio is 299 
M-l. Note that the oblique asymptote adequately defines the behavior of L* 
but the initial slope provides a ktr value double the true value of Kb. Unfor- 
tunately, the true value of KL is difficult to extract from the data. Equation 
(4’) predicts an CY@-’ value of 1.20 at [A]-’ = 0.5 (2 M acceptor). If this one 
point is used to estimate the initial slope, a value of 2.5 M-l results. 

* 

so,0 

7- 7- 

56.0 

_a 

a 
25,25 

l- 
o, 100 0, loo 

I 1 1 
50 100 50 100 

A-’ A-’ 

Fig. 4. Representative sensitization plots for two non-interconverting excited states as 
initial populations vary: Kb = 1, Ki = 300 and @h = @i;s = 0. The numbers on each 
curve indicate the percentage values of FS and FL respectively. 

Fig. 5. Representative sensitization plots for two interconverting excited states as initial 
populations vary: K$ = 1, Xi = 300 and &$L = #b = 1. The numbers on each curve 
indicate the percentage values of Fs and FL respectively. 

Keeping f = 1 but increasing the contribution of FL lowers both the 
final slope and the intercept until a linear plot is obtained with the intercept/ 
slope ratio still equal to 300 M-l when Fs = 0. As the contribution of Fs is 
increased, the final slope and intercept both rise so that their ratio remains 
constant. Again, when FL becomes negligibly small a linear plot results. 
Cutting f by half while keeping the Fs/F, ratio unchanged doubles all slopes 
and intercepts, such that values of intercept/slope ratios are independent 
of f. 



Figure 5 demonstrates the very different dependence on F values when 
there is state interconversion. The general trends are the same as in Fig. 4 
except that distinct curvature is now apparent even when FL = 0. 
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